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Abstract—Connectionist temporal classification (CTC) has re-
cently shown improved performance and efficiency in automatic
speech recognition. One popular decoding implementation is to use
a CTC model to predict the phone posteriors at each frame and
then perform Viterbi beam search on a modified WFST network.
This is still within the traditional frame synchronous decoding
framework. In this paper, the peaky posterior property of CTC is
carefully investigated and it is found that ignoring blank frames will
not introduce additional search errors. Based on this phenomenon,
a novel phone synchronous decoding framework is proposed by
removing tremendous search redundancy due to blank frames,
which results in significant search speed up. The framework nat-
urally leads to an extremely compact phone-level acoustic space
representation: CTC lattice. With CTC lattice, efficient and effec-
tive modular speech recognition approaches, second pass rescoring
for large vocabulary continuous speech recognition (LVCSR), and
phone-based keyword spotting (KWS), are also proposed in this
paper. Experiments showed that phone synchronous decoding can
achieve 3–4 times search speed up without performance degrada-
tion compared to frame synchronous decoding. Modular LVCSR
with CTC lattice can achieve further WER improvement. KWS
with CTC lattice not only achieved significant equal error rate
improvement, but also greatly reduced the KWS model size and
increased the search speed.

Index Terms—CTC, Decoder, DLSS, KWS, Lattice, LVCSR,
WFST.

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) is both a pattern
recognition and search problem [1]. Speech recognition

errors come from both sides, called modeling error and search
error respectively. The search process of a speech recognizer
is to find a sequence of labels whose corresponding acoustic
and language models best match the input feature so as to min-
imize the search error. According to different modeling units
between acoustic and language models, such kind of search al-
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gorithms can mainly be divided into two types, breadth-first style
time synchronous beam search and depth-first style stack decod-
ing(A* search). As the heuristic function for A* search is hard to
be obtained in large vocabulary continuous speech recognition
(LVCSR) [2] and not suitable for online speech recognition ap-
plication, beam search approach has been dominant for decades.
The approach operates at each frame using Viterbi algorithm
with beam pruning [3], hence referred to as frame synchronous
search. Despite the wide adoption, the approach has some weak-
ness. Firstly, it is an equal interval search algorithm and is in-
efficient to deal with the dynamic changes of time gap between
acoustic and linguistic units (e.g. phones). Secondly, it is usually
hard to balance search efficiency and search errors for LVCSR.

For the first problem, frame skipping (FS) [4] [5], or more
sophisticated variable frame rate (VFR) schemes [6], [7] are
proposed to achieve unequal search interval. However, such
methods only focus on acoustic features without considering
the granularity gaps between acoustic frame and linguistic units.
Therefore, these feature-level variable frame rate methods can
not dynamically adjust the search interval to match the infor-
mation rate of linguistic knowledge sources. This is the main
limitation of the prior arts.

As for the second problem, two decoding frameworks have
been investigated to address it.

1) Integrated search with search space optimization:
Weighted finite state transducer (WFST) [8] is proposed
to offline combine different knowledge sources (acous-
tic and language models, etc) and perform search space
optimization to achieve best searching efficiency in ad-
vance [9], [10]. The history conditioned lexical tree search
[11] is another strategy for integrating different knowledge
sources but by dynamic expansion. Meanwhile, runtime
pruning is conducted via the Viterbi beam search process
on all decoding paths [12] with sophisticated lookahead
strategies [13], to improve search efficiency. However, in-
tegrating all knowledge sources together leads to a huge
search space. In real time decoder, search error becomes
even more critical because of harder pruning to reduce
exhaustive search.

2) Multi-pass modular search: In [14], HMM-state is gener-
ated for each frame of the whole utterance and mapped to a
phone lattice. Then other knowledge sources (e.g., phone-
mic error model [15], keyword sequence [16] or language
model [17]) are applied to the lattice using dynamic pro-
gramming or WFST composition. However, the time com-
plexity of the method is large while performance enhance-
ment is minor. The key reason is that acoustic information
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in HMM is not concentrated (HMM state loops and last
for several frames) and the model unit is smaller than a
phone. This results in large phone lattice and makes lattice
pruning very hard to trade off between accuracy and speed.

Connectionist temporal classification (CTC) [18] has been
proposed as a new type of acoustic model in ASR and achieved
state-of-the-art performance [19], [20], [21], [22]. Besides, con-
text independent monophone CTC model also shows competi-
tive performance compared with context dependent state clus-
tered hybrid neural network HMM model [22], [23], [24], [25].
CTC model usually outputs a highly peaky distribution. An
interesting characteristics is that the majority of frames have
the blank symbol as the most likely output [23]. Hence, there
exist long spans of blank in the search space. Within these
blank spans, since linguistic information (i.e. phones or words)
does not change at all, any search effort, i.e. acoustic and lin-
guistic score combination and token passing, becomes redun-
dant. When a phone starts dominating the distribution, linguistic
search space changes. Only at this point should search be con-
tinued. We name this characteristics as discontinuous linguistic
search space (DLSS) phenomenon of CTC-trained model. It is
further analyzed in Section III-A.

In this paper, the potential of the DLSS phenomenon in CTC-
trained model is utilized to remove tremendous search redun-
dancy due to blank frames. In this way, frame synchronous
decoding (FSD) is transformed into phone synchronous decod-
ing (PSD) with self-adjusted interval in WFST-based decod-
ing. Such process can also be viewed as a variant of variable
frame rate analysis. However, in contrast to all prior arts, PSD
frame rate analysis is carried out at model level rather than fea-
ture level, which results in higher efficiency. The PSD frame-
work naturally leads to the construction of phone-level CTC
lattice. CTC lattice is extremely compact and preserves almost
all acoustic information. Since phone lattice is the basis for mod-
ular search paradigm of ASR, phone-level CTC lattice benefits
various modular search approaches. Two CTC lattice motivated
approaches, LVCSR rescoring and keyword spotting, are inves-
tigated in this paper.

The rest of the paper is organized as follows. In section II,
CTC model training is briefly reviewed. In section III, phone
synchronous decoding and CTC lattice are introduced in detail.
Integrated and modular search methods with CTC lattice are
discussed in section IV. Section V describes experiments and
analysis, followed by the conclusion in section VI.

II. CTC ACOUSTIC MODEL

In this section, Connectionist temporal classification (CTC)
model [18] and its characteristics are briefly introduced. Origi-
nally, CTC model is proposed with bi-directional RNN. Since it
is challenging to deploy bi-directional RNN models in an online,
low-latency decoding setting [21], this paper mainly focuses on
uni-directional LSTM based CTC model. It is noted that all con-
clusions in this paper also apply to bi-directional RNN based
CTC models.

A CTC model predicts the conditional probability of a label
sequence (phone sequence in ASR) by summing over the joint

probabilities of the corresponding set of CTC symbol sequences
(called paths). Assuming CTC symbols are conditionally inde-
pendent at each frame, the conditional probability of the whole
label sequence is given by

P (l|x) =
∑

π∈B−1 (l)

P (π|x) =
∑

π :π∈L ′,B(π1 :T )= l

T∏

t=1

yt
πt

(1)

where , l = (l1 , . . . , lU ) denotes a phone label sequence con-
sisting U phones, l ∈ L and L is the phone set for ASR.
x = (x1 , . . . , xT ) is the corresponding feature sequence of T
frames, t is the index of frame and T is the total number of
frames. In CTC, it is assumed that U ≤ T . π1:T = (π1 , . . . , πT )
is the frame-wise decoding path from frame 1 to T , i.e.
CTC output symbol sequence. Each output symbol π ∈ L′ and
L′ = L ∪ {blank}. blank is a special model unit introduced
within the CTC framework. It represents a label of “null” and
models the acoustic variabilities outside the defined phone sets.
yt

k is the probability of output symbol of CTC network k at time
t. A many-to-one mapping B is defined as B : L′ �→ L to de-
termine the correspondence between a set of paths and a phone
label sequence. The mapping rule is to first remove the repeated
phone labels and then all blank symbols from the paths.

The CTC objective function J is defined as the negative
log conditional probability of the correct labels of all training
sequences

J = −
N∑

n=1

ln(P (ln |xn )) (2)

where n is the index of training sequences. The gradient of (2)
with respect to (w.r.t.) the output at each frame can be calculated
as (using one training sequence as an example)

∂J
∂yt

k

= −∂ ln(P (l|x))
∂yt

k

= − 1
P (l|x)

∂P (l|x)
∂yt

k

(3)

Here, P (l|x) in (3) can be efficiently calculated by forward-
backward algorithm [18]

P (l|x) =
|l′ |∑

j=1

αt(j)βt(j) (4)

where l′ is the modified label sequence for phone sequence l by
adding blank to the beginning and end of l as well as the gap
between every pair of neighbouring labels. Hence, the length of
l′ is larger than l. j is used to denote the length of a modified
label sequence. αt(j) and βt(j) are the forward and backward
probabilities at time t with length j. With equation (4), back
propagation can be used to derive gradients of the parameters
of the neural network (in this paper, uni-directional LSTM).
Details of CTC training can be found in [18].

CTC model optimizes the conditional probability of label se-
quence by summing over all probabilities of the mapped paths,
which include repeated labels and span of blank between pairs
of labels. Therefore, the acoustic information output from CTC-
trained model is concentrated (by learning the many-to-one
function of B) and the output distribution of CTC-trained model
is peaky.
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III. PHONE SYNCHRONOUS DECODING AND CTC
LATTICE GENERATION

A. From Frame Synchronization to Phone Synchronization

In LVCSR, decoding is to find the best word sequence. By
applying dictionary and language model to transform word se-
quence to CTC label sequence, the decoding formula in CTC-
trained model is derived as

w∗ = argmax
w

{P (w)p(x|w)} = argmax
w

{P (w)p(x|lw )}

= argmax
w

{
P (lw |x)P (w)

P (lw )

}
(5)

= argmax
w

{
P (w)max

lw

P (lw |x)
P (lw )

}
(6)

Here, mono-phone CTC is taken as an example (the CTC label
set consists of phone labels and the blank symbol). w is a word
sequence and w∗ is the best word sequence. lw denotes the
phone sequence corresponding to w1. P (lw ) in (5) is the prior
probability of phone sequence.

For a certain CTC label sequence, forward probability is de-
fined and approximated as (7), [18]

P (l|x) =
∑

π :π∈L ′,B(π1 :T )= l

T∏

t=1

yt
πt

∼= max
π :π∈L ′,B(π1 :T )= l

T∏

t=1

yt
πt

(7)

Therefore, (6) can be transformed to frame synchronous
Viterbi beam search as below. Similar to the form in DNN-
HMM, here network is traversed at each frame in an overall
optimized search space [10].

w∗ ∼= argmax
w

{
P (w) max

π :π∈L ′,B(π1 :T )= lw

1
P (lw )

T∏

t=1

yt
πt

}
(8)

Equation (8) reveals that πt = blank doesn’t change the map-
ping result of B(π1:T ). Hence, linguistic score keeps unchanged
when πt = blank. As for acoustic score, if all competing paths
share the same span of blank frames, ignoring the scores of
these frames does not affect the acoustic score rank (with soft-
max layer in CTC model, the blank acoustic score is approach-
ing a constant of 1). Therefore, when speech waveform is in
the long span of blank, any calculation of acoustic and lin-
guistic scores becomes redundant because the linguistic search
space does not change at all during that span. After the blank
span, linguistic search space starts to change with the acous-
tic information from the next phonemic span. At that point,
search should be continued. We name such characteristics as
the discontinuous linguistic search space (DLSS) phenomenon
of CTC-trained model. The DLSS phenomenon in CTC-trained

1Here, only single pronunciation dictionary is considered for notation sim-
plicity.

model can be used to remove tremendous search redundancy
due to blank frames.

Here, the set of common blank frames are defined as

U = {u : yu
blank 
 1} (9)

and equation (8) can be rewritten as

w∗ ∼= argmax
w

{
P (w) max

π :π∈L ′,B(π1 :T )= lw

1
P (lw )

×
{ ∏

t �∈U

yt
πt

·
∏

t∈U

yt
blank

}}
(10)

= argmax
w

⎧
⎨

⎩P (w) max
π :π∈L ′,B(π1 :T )= lw

1
P (lw )

∏

t �∈U

yt
πt

⎫
⎬

⎭

= argmax
w

⎧
⎨

⎩P (w) max
π ′:π ′∈L,B(π ′

1 :J )= lw

1
P (lw )

J∏

j=1

y
tj

π ′
j

⎫
⎬

⎭

(11)

where j is the index of the phone sequence (i.e. non-blank
CTC label sequence), π′

1:J is the phone-wise decoding path
from phone 1 to J . J is the number of output phone labels
(J = T − |U |) Comparing (8) to (11), the number of search it-
erations in (8) is T , while in (11) it is J . J is usually significantly
smaller than T . Therefore, based on the DLSS phenomenon,
frame synchronous Viterbi beam search has been transformed
to phone synchronous Viterbi beam search. The main differ-
ences between frame synchronous decoding (FSD) and phone
synchronous decoding (PSD) include

1) Different Information Rate: In FSD, both acoustic and
linguistic information are processed at each frame, forc-
ing both information rates to be the same as the frame
rate of acoustic feature. In contrast, in PSD, acoustic in-
formation is processed by frame rate of acoustic feature,
while linguistic information is processed phone by phone
(phonemic rate of acoustic model inference). The different
rates of processing in acoustic and linguistic information
remove tremendous search redundancy.

2) Adjustable Search Interval: In FSD, WFST network is tra-
versed at fixed equal interval (even multi-frame deep neu-
ral networks decoding [4] traverses linguistic search space
by longer but still equal interval). In contrast, in PSD, the
search interval is self-adjusted (smart and without perfor-
mance deterioration) to remove search redundancy due to
blank frames, which brings about significant efficiency
improvement in decoding.

It is worth noting that within the FSD framework, approaches
to adjust search interval have also been investigated, such as
frame skipping (FS) [4], [5], or more sophisticated variable
frame rate schemes (VFR) [6], [7]. Although these methods all
achieve frame skipping effect and consequently improve decod-
ing speed, they only focus on acoustic features and do not con-
sider linguistic search space. As previously discussed, different
information rates of knowledge sources inevitably lead to time
granularity difference during search. Simply replying on fea-
ture level analysis may not capture and address the difference
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accurately. Hence, the search interval adjustment, or variable
frame rate, schemes within the FSD framework has limitation
in optimising search efficiency. In contrast, within the proposed
PSD framework, frame rate is adjusted and adapted automati-
cally to linguistic space change. PSD not only removes heuristics
in frame rate analysis, but also achieves search efficiency and
less acoustic information loss.

Alternatively, search space compression is another direction
to fulfill the peaky property of CTC trained model during de-
coding. A well engineering method is to adopt traditional adap-
tive beam pruning strategy [26] by applying distinct pruning
strategies in blank frames and phonemic frames. However,
such method is hard to achieve the best efficiency, and lack
of theoretical support and carefully research. Essentially, adap-
tive beam pruning strategy achieves speed-up in both acoustic
candidate selection and search space compression, while PSD
directly speeds up by longer decoding steps.

Recently, novel HMM topology was proposed in LF-MMI
[27], which holds a similar many-to-one mapping as B function
discussed in Section II, except the difference that each triphone
gets its own version of the blank. In our experiment, the output
distribution of LF-MMI is not so peaky like that in CTC. How-
ever, HMMs in LF-MMI emit phone units with extra blank,
as well. Therefore, it is interesting to apply PSD framework in
LF-MMI trained model after some specific treatment in blank,
and may be the future work.

B. Search Space Analysis

As indicated in Section III-A, In phone synchronous decod-
ing (PSD), there is almost no search loss compared to standard
frame synchronous decoding (FSD). On the other hand, com-
pared to FSD, the rate of linguistic information processing is
greatly reduced, because of the removal of large number of
blank frames in the decoding paths of CTC-trained model. It is
therefore interesting to analyze the change of search space and
decoding errors. Two metrics are defined for this purpose.

Network Traversal Reduction Rate, λ, is defined as the aver-
age of blank frame percentages of test utterances

λ =
1
N

N∑

n=1

#{U (n)}
T (n) (12)

where n is the index of test utterance and N is the total number of
utterances, #{U (n)} and T (n) are the number of blank frames
and the total number of frames of utterance n. By definition,
λ denotes the percentage of linguistic search space traversal
reduction in PSD for a given set of test utterances.

Even in non-blank frames, not all phones have noticeable
posteriors from the CTC model. Hence, λ is just a lower bound
of the actual search space compression in practice. To get a
more realistic estimation, we further define an additional term,
Active Phone Rate, β. It is calculated as the percentage of active
phones (phones with posteriors larger than a small threshold)
with respect to all phones for a given set of test utterances. With
λ and β, the overall Theoretical Compression Rate, R, is defined

Fig. 1. CTC Lattice Example.

TABLE I
ACOUSTIC INFORMATION OF CTC LATTICE EXAMPLE

Time phone label : acoustic score

0.4 s < blk > : 0.2 nsn : 0.5 th : 0.2 ch : 0.1
0.9 s < blk > : 0.3 ow : 0.6 spn : 0.1
1.5 s < blk > : 0.2 ch : 0.3 ao : 0.2 aw : 0.2 ax : 0.1

as below

R = 1 − (1 − λ) × β (13)

By definition, R is the overall measure of the search space
compression yielded by PSD. In practice, λ is usually about
0.8, and β is around 0.1, yielding a very effective theoretical
compression rate R = 0.98. More experimental analysis is given
in Section V-A. Thanks to the tremendous reduction in active
tokens, a wider beam can be used to achieve better performance.
That’s another superiority of PSD to FSD.

C. CTC Lattice - Extremely Compact Acoustic Information
Preserver

Given the above discussion, CTC lattice is proposed, as a
preserver of phone level acoustic information. CTC lattice can
fulfil the search optimization advantage in Section III-B, while
providing a compact and flexible form for further utilization.

Figure 1 is an example of CTC lattice in WFST form. Suppose
phone level acoustic scores from CTC model is as table I, WFST
can be built with ”sausage” style. Here each span between two
phonemic frames is connected by arcs with each phone label as
WFST output label and its negative acoustic score as arc weight.
The input label is set to epsilon, <eps>, so that further WFST
optimization can be done.

From table I, phone information are only stored at 3 time
frames. Compared to frame level phone posteriors, CTC lat-
tice is extremely compact in acoustic information compression.
With further post-processing, consecutive phones and blank
can also be removed, which is discussed in Section IV-A. De-
spite the compactness, almost all acoustic information is well
preserved in CTC lattice due to the peaky posterior property of
CTC model. The compactness and effectiveness of acoustic in-
formation preservation leads to wide applications as discussed
in the below section.

IV. SPEECH RECOGNITION WITH CTC LATTICE

In ASR, there are mainly two kinds of tasks, large vocabulary
continues speech recognition (LVCSR) and keyword spotting
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Fig. 2. Example of Dynamic Expanding Acceptor in Acoustic Search Space.

(KWS) . LVCSR aims to recognize naturally spoken utterances
with large vocabulary of words. KWS aims to accurately and
efficiently detect a small number of predefined keywords in
continuous speech. Both of LVCSR and KWS tasks can be im-
plemented in either top-down integrated decoding architecture
[28], [9], [29], or bottom-up modular decoding architecture [30],
[16]. This section will discuss the technical details of applying
PSD derived CTC lattice to both tasks within the two different
decoding architectures.

A. Top-Down Integrated Search

In the architecture, WFST [8] is proposed to offline combine
different knowledge sources and perform search space opti-
mization in advance. Then Viterbi beam search is applied in the
overall search space to get the final result.

1) Search Space Construction: Search space of phone syn-
chronous decoding can be constructed into two parts similar to
[31], referred to as acoustic search space and linguistic search
space respectively.

In acoustic search space, a dynamic expanding acceptor is
constructed for each model unit in CTC, to filter out blank la-
bels and repeating phone labels. Figure 2 is an example of such
structure for a certain model unit(ahas an example). The dy-
namic expanding acceptor is applied on-the-fly during acoustic
space search.

After going through acoustic space, token passing algorithm
[32] is performed on a pre-compiled static phonemic weighted
graph (linguistic search space). Linguistic search space is con-
structed and optimized by WFST operation before decoding. In
this paper, the model unit of CTC is mono-phone2. Therefore,
rather than using HCLG as in [9] (H for acoustic model and
transition model, C for phone context dependency model, L for
pronunciation lexicon and G for language model), only LG is
used here. In LVCSR task, G is grammar [33] or N-gram [34]
language model.

Compared to the standard static WFST based search graph
for context dependent HMM model in [9], the search graph
of phone synchronous decoding is reduced by approximately 5
times because of removing HC graph. Compared to the TLG
graph proposed in [23] (T for token mapping WFST), there’s
also 2-3 times of size reduction by removing T graph.

2) Search Algorithm: Phone synchronous decoding algo-
rithm is summarized as Algorithm 1.

2In tri-phone based CTC [20], it is also possible to use PSD. In this case,
acoustic search space is designed with similar acceptor structure in Figure 2,
while CLG is used as linguistic search space.

Algorithm 1: Phone Synchronous Viterbi Beam Search(S,
E, Q, T).

1: Q ← S � initialization with start node
2: for each t ∈ [1, T ] do � frame-wise NN Propagation
3: F ← NNPropagate(t)
4: if !isBlankFrame(F ) then � phone-wise WFST

search
5: Q ← V iterbiBeamSearch(F,Q)
6: end if
7: end for
8: B̂ ← finalTransition(E,S,Q) � to reach end node
9: backtrace(B̂)

Fig. 3. WFST-based Modular Composition with CTC Lattice.

Here, S and E are start and end node of the precom-
piled WFST network. Q preserves active tokens, B̂ pre-
serves decoding paths. T is the total number of frames.
NNPropagate(t) is to do acoustic model inference at each
frame. isBlankFrame(F ) is to detect whether a frame is
blank or not. V iterbiBeamSearch(F,Q) is the standard
Viterbi beam search algorithm in FSD but only conducted at
phone level in PSD. finalTransition(E,S,Q) is to traverse
to the end node of WFST as in [35].

B. Bottom-up Modular Search Method

In bottom-up modular search, phone lattice is first generated
from acoustic model inference as front-end. Then other knowl-
edge sources are applied to the lattice to get final results.

1) WFST-based Modular Composition: The architecture is
shown in Figure 3. The first step is to transform phone level
CTC lattice to word level lattice using WFST composition with
a dictioinary. The pipeline of this procedure is

W ← epsremoval(P ◦ T ◦ L) (14)

where P is CTC lattice and L is lexicon WFST constructed
from a dictionary. T is designed to filter out blank symbol and
repeating phone label as in [23] (T stands for token mapping
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Fig. 4. CTC output of a speech segment and the corresponding CTC lattice.
Different colours represent the posteriors of different phones. The black line
in the lattice indicates a potential path and the grey dashed lines are all valid
connections.

WFST). Because there are many epsilon labels in P , epsilon
removal [9] is performed on the composition result. Finally,
P is transformed to word lattice W and ready for applying
language model. It is worth noting that, with CTC lattice, it
is easy to employ different dictionaries of the same phone set
during decoding. Once phone level lattice is transformed to word
level lattice, it’s trivial to apply different types of language
models, which is usually referred to as lattice rescoring. For
example, high order n-gram [35] or RNN [36], [37] can be
used.

Since large portions of blank frames are removed during
phone synchronous decoding, given the same lattice oracle er-
ror rate, CTC lattice is much more compact than phone lattice
generated from frame synchronous decoding. This is because
there are less arcs with the same phone label but slightly differ-
ent time boundaries. Therefore, it is more convenient to perform
rescoring using complex language model on CTC lattice.

2) MED-based Phone Lattice Pattern Matching: Based on
CTC lattice, a minimum edit distance (MED) based phone lattice
pattern matching approach for keyword spotting task is proposed
as shown in figure 4.

Suppose lw is the phone sequence of predefined keyword and
l be a hypothesized phone sequence. For a speech utterance, let
LH represent the corresponding CTC phone lattice containing
all possible phone sequences. Then, the probability of target
keyword lw existing in LH is

P (lw |LH ) ∝ P (LH |lw )P (lw ) ≈ P (lmax |lw )P (lw ) (15)

where lmax is the most likely phone sequence in LH given lw .
P (lw ) is the prior probability of the phone sequence of keyword
w. Since lw is given, whether the keyword lw exists or not in the
test utterance is dependent on the value of P (lmax |lw ). Here,
lmax is defined as

lmax = argmax
l

P (l|lw ) = argmax
l

P (lw |l)P (l)
P (lw )

= argmax
l

P (lw |l)P (l) (16)

where P (l) is the CTC probability of l, which can be calculated
using equation (7).

P (lw |l) is estimated through multiplying the probabilities of
each edit operation when computing the minimum edit distance
(MED) between l and lw ,

P (lw |l) �
M ED (lw ,l)∏

i=1

P (opi |lr = lw , le = l)

(17)

P (opi |lr = lw , le = l) =

⎧
⎨

⎩

P (ins(ei)) if opi ∈ I
P (del(ri)) if opi ∈ D
P (ri |ei) if opi ∈ S

(18)

where MED(lw , l) indicates the minimum number of edit op-
erations (insertion, deletion and substitution) between lw and l.
P (opi |lr = lw , le = l) denotes the probability of the i-th edit
operation opi between le and lr , given that the reference se-
quence lr is lw and the hypothesis sequence le is l. Since MED
algorithm is deterministic and both le and lr are given, each edit
operation is known.

According to the type of opi , there are three kinds of proba-
bilities: the probability of insertion operation P (insert(ei)),
deletion operation P (delete(ri)) and substitution operation
P (ri |ei). I , D and S denote the sets of insertion, deletion and
substitution operations respectively. ei and ri are the phones
involved in opi (insertion and deletion involve one phone and
substitution involves two) and they belong to hypothesis le and
reference lr respectively. These three kinds of probabilities can
be estimated from prior knowledge. In this paper, they are es-
timated directly through a phone-level confusion matrix [38]
calculated by comparing the phone alignment between an ASR
hypothesis and the corresponding reference. Instead of enumer-
ating all possible l in the lattice, (16) can be efficiently computed
in O(Nnd) time using dynamic programming, where N is the
total number of nodes in the lattice, and d is the depth of the lat-
tice [39]. Normally, n and d are small (n < 15 and d < 5), and
N depends on the number of phones of a utterance. Therefore,
the hypothesis search is efficient.

Empirically, for different phones, CTC model may have dif-
ferent modelling effects. Therefore, the threshold of a keyword
should be dependent on its phone sequence. Prior statistics can
be used to estimate an optimal contribution factor for each phone
on a valid set. Besides, a special label wb is introduced to model
the word boundaries in CTC model [40]. The motivations are
two folds: (a) increasing the length of short keywords to avoid
its phone sequence being a substring of a longer word, (b) wb
helps the search algorithm to stride across those misidentified
spikes.

V. EXPERIMENT

In this section, the quality of CTC lattice is analyzed first.
Then, experiments of LVCSR on an English switchboard task
and KWS on a Wall Street Journal task are reported in detail.
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Fig. 5. Network Traversal Reduction λ v.s. Oracle Phone Error Rate.

A. CTC Lattice Quality Analysis

As shown from equation (10) to (11) in section IV-B, CTC
lattice is an extremely high quality phone lattice. Experimental
analysis to demonstrate this is reported in this section. In the
experiments, the LSTM-CTC acoustic model was trained on a
310 hours English Switchboard task (details of setup are listed
in V-B1) and tested on the NIST 2000 Hub5e set (referred to as
hub5e) and Rich Transcription 2003 set (referred to as rt03 s).

Oracle phone error rate (OPER) is used as the measurement
of CTC phone lattice quality. It directly reflects the overall
quality of phone lattice and is calculated as the error rate of the
best possible phone sequence existing in the lattice w.r.t. the
reference phone sequence [41].

As discussed in section III-B, network traversal reduction
rate λ reflects the linguistic search space reduction caused by
removing all blank frames. Since whether a frame is blank
is determined by the probability of blank symbol as shown in
equation (9), different thresholds may result in different λ and
consequently different OPER. To investigate the relationship
between linguistic search space reduction using PSD and the
quality of the resultant CTC lattice, we plotted OPER versus
network traversal reduction rate λ, as shown in figure 5. It can
be observed that even after 80% of frames are regarded as blank
frames and removed, the OPER is still less than 3%. This will
lead to significant decoding speed-up with little information
loss. Given the research of the relationship between phone error
rate (PER) and word error rate (WER) in [15], such rate of OPER
is sufficiently low for further combination with other knowledge
sources.

λ only shows linguistic search space reduction, overall search
space reduction should also take into account the rate of actual
active phones. As indicated in section III-B, the theoretical com-
pression rate R reflects overall search space reduction as well as
the compactness of CTC lattice. Figure 6 shows the relationship
between theoretical compression rate R and OPER. It can be
seen that even if 95% overall search space is compressed, the
corresponding OPER is still very low (less than 3%).

In light of the previous experiments, we can choose appro-
priate blank frame threshold (corresponding to λ) and CTC
posterior prune threshold (corresponding to β) to get a good
trade-off between search space reduction and OPER increase.

Fig. 6. Theoretical Compression Rate R v.s. Oracle Phone Error Rate.

TABLE II
STATISTICS OF SEARCH SPACE REDUCTION AND OPER

Method Testset λ(%) β (%) R(%) OP ER(%)

CTC hub5e 75 10 97.5 3.22
Lattice rt03s 74 11 97.0 4.74
Alignment hub5e 77 5 98.8 0

rt03s 75 7 98.2

Table II shows the chosen λ and β for the rest experiments in the
paper3. λ is directly related to decoding speed, while β is also
related to compactness and quality of CTC lattice in preserv-
ing acoustic search space. The resultant theoretical compression
rate R and OPER are also given. It can be observed that the two
indicators show impressive search space compression with very
little potential information loss.

The first row block of table II shows the statistics of PSD and
CTC lattice in actual decoding. To further investigate how good
the chosen parameters are, ideal statistics (best possible search
space reduction and OPER) are also calculated. To get the ideal
statistics, forced-alignment [33] was performed on CTC paths
(the method is the same to alignment step in sequence training
of CTC model [20]) and accurate phone or blank labels were
gotten for each frame. It is then trivial to calculate an ideal λ, i.e.
the actual blank frame rate. Given the aligned phone label for
each frame, it is possible to find the aligned phone with lowest
CTC model posterior and set the global β accordingly, to allow
all aligned phones exist in the resultant CTC lattice. Obviously,
λ and β chosen in this way will lead to zero OPER. It can be
observed that the ideal search space reduction R (without any
information loss) is very similar to the R obtained from the
actual PSD process. This demonstrates the efficiency of PSD
and CTC lattice.

B. LVCSR task

1) Experimental Setup: The experiments were conducted on
an English Switchboard task. A subset of 51 hours data from 310

3blank frame threshold and CTC posterior prune threshold are fixed in the
whole paper and mainly related to the peaky degree of the acoustic model,
essentially. These parameters are not sensitive to testset, which is discussed
after Table IV, as well.
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TABLE III
WER COMPARISON BETWEEN CI-CTC, CD-CTC & CD-HMM

WER (%)

hub5e rt03s

Dataset Context Dependency Model swb callhm fsh swb

50 hr CD DNN-HMM 19.8 33.2 24.5 34.6
CD LSTM-HMM 19.5 32.4 24.1 32.8
CI LSTM-CTC 29.3 45.0 35.6 45.4

310 hr CD DNN-HMM 16.7 29.3 20.9 30.7
CD LSTM-HMM 14.9 26.9 19.4 28.3
CI LSTM-CTC 18.7 33.3 24.3 34.5
CD LSTM-CTC 18.0 31.1 23.7 32.8

hours Switchboard dataset was randomly chosen to form a small
training set for development. Both context-dependent (CD) and
context-independent (CI) LSTM-CTC models were built. The
training procedure and configuration are similar as [24]. 7-layer
CD-DNN-HMM and 3-layer CD-LSTM-HMM were built as
baselines. CD-DNN-HMM and CD-LSTM-HMM models used
8775 tri-phone states as output, while CD-LSTM-CTC model
used 1326 tri-phones and CI-LSTM-CTC model used 46 phones
as output. Filter bank coefficients were used as input features
for all models. All LSTM models employed projection tech-
nique [42]. All models were designed with around 2.5-3 M
parameters to get fair comparison (except that CI-CTC model
has significantly less parameters than the others). An interpo-
lated trigram language model trained on 2000 hours of Fisher
transcription was used for decoding.

The decoder used in all experiments is an internal optimised
WFST decoder. During testing, the decoding machine setup is
Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00 GHz. The NIST 2000
Hub5e set (referred to as hub5e) and Rich Transcription 2003
set(referred to as rt03 s) are used as test sets. Full tests were
evaluated for baseline comparison and only the switchboard
parts were used in latter experiments.

2) Baseline Performance: Performance of LSTM-CTC
models are compared with state-of-the-art DNN and LSTM
models. Both context-independent (CI) and context dependent
(CD) LSTM-CTC were built.

From table III, the performance is compatible with [23], [24],
[27], e.g., in [27], the attempts to get CTC to beat cross-entropy
trained systems on mere hundreds of hours of data were also
unsuccessful. We suspect the reason is that the blank in CTC is
hard to achieve good modelling effect with limited data. Corre-
spondingly, it can be observed that CTC model performs better
with more data. Although in 310-hours dataset, there is still
some gap between LSTM-HMM and LSTM-CTC models, the
gap becomes narrower than the 50-hours setup. Previous works
[25], [22] showed that with larger training dataset, CI-phone-
CTC model performs better than CD-state-HMM model. Our
previous work [43] also shares similar finding in large dataset.
Since the focus of this paper is on search algorithm, latter ex-
periments are still conducted on CI-LSTM-CTC trained on 310-
hours of data for better research comparison. It is noted that
the conclusion of this paper is also valid on CD-LSTM-CTC
model.

TABLE IV
PHONE SYNCHRONIZATION COMPARED WITH FRAME SYNCHRONIZATION

Testset Sync WER (%) S-RTF RTF Active Tokens

hub5e Phone 18.8 0.022 (3.4X) 0.056 513(−77%)
-swb Frame 18.7 0.075 0.11 2221
rt03s-swb Phone 34.4 0.022(3.3X) 0.055 511 (−77%)
-swb Frame 34.5 0.073 0.12 2211

3) Top-Down Integrated Phone Synchronous Decoding:
1) Speed-up of Phone Synchronous Decoding (PSD)
Experiment results on phone synchronous decoding (PSD)

are listed in Table IV, with the most popular WFST-based CTC
implementation (FSD) [23] as the baseline.

Real time factor (RTF), the percentage of decoding time w.r.t.
wave time, is a common measurement for decoding speed. Re-
sult shows that, there’s no ASR performance degradation in
PSD, while achieving 2-3X overall speed-up compared with
the standard FSD CTC implementation [23]. Decoding time in-
cludes both neural network propagation time and WFST search
time. Since PSD mainly speeds up the latter one, pure WFST
search time divided by waveform length is individually listed as
S-RTF in the table, which reveals 3-4X speed-up in it. Besides,
the decrease of active tokens in table IV also parallel reflects
both S-RTF here and λ in Table II.

Besides, the speed-up rates in hub5e-swb and rt03s-swb are
similar. As discussion in Section V-A, the fixed parameters re-
lated to β and λ is only related to the acoustic model but not
sensitive to different testsets. Our preliminary trials on noisy
testset also shows similar speed-up with slight decrease (rela-
tive 10%), but without loss in ASR performance. Research on
the decrease in speed-up can be the future work.

Our other PSD experiments also show similar 3-4X speed-up
with CD-phone-CTC model with no loss in ASR performance.
The reason is that the outputs of acoustic model are still phone
units with a single extra blank. Although there are more phone
units, the single blank make the model peaky enough to distin-
guish blank frames and phonemic frames.

1) Speed-up Robustness to LM Size
In the experiment, language model (LM) size was increased

to test the robustness of speed-up (extendibility to more com-
plex linguistic search space) from frame to phone synchronous
decoding. N-gram LM was chosen here, but the results can be
easily extended to other LM, such as RNN [44]. In WFST-
based decoder, RTF shows nearly linear relationship with aver-
age number of active token [35], [10], so active token number
is used to measure the speed of decoding.

Figure 7 shows that active token number in PSD is almost
unchanged with the growing size of language model. In the same
experiment, active token number of CD-state-NN-HMM system
is always far more than PSD, especially when LM scales up.
Besides, active token number in FSD is also growing distinctly
faster compared with PSD. It is then concluded that the speed-up
achieved by PSD is robust to the increase of LM search space.

1) Comparison with Other Frame Rate Changing Methods
As previously discussed, PSD can be regarded as a vari-

able frame rate approach. Hence, it is interesting to compare it
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Fig. 7. LM scale-up v.s. active tokens in phone/frame synchronous decoding.
For clarity, only hub5e-swb is plotted and the rest sets have similar trends.

TABLE V
COMPARISON BETWEEN PSD AND OTHER FRAME RATE CHANGING METHODS

Testset Method WER (%) S-RTF RTF

hub5e-swb PSD 18.8 0.022 0.056
VFR 24.7 0.038 0.058
FS 18.5 0.039 0.057

PSD + FS 18.4 0.017(4.4X) 0.035
rt03s-swb PSD 34.4 0.022 0.055

VFR 39.5 0.038 0.057
FS 34.1 0.039 0.056

PSD + FS 34.2 0.017(4.3X) 0.036

with various frame rate changing approaches within the FSD
framework. Here, frame skipping (FS) and variable frame rate
(VFR) schemes were investigated. With LSTM-CTC model, FS
was implemented similar to [5] but without procedure of poste-
rior copying because such procedure mainly deals with HMM
state level loops and transitions, which brings about extra bur-
dens in WFST search. VFR was implemented in a typical setup
as in [45]. Both S-RTF and RTF were evaluated because FS and
VFR affect both indicators while PSD mainly affects the latter
one.

Comparing table V to table IV, FS applied to CTC model
can speed up both S-RTF and RTF by 2 times without perfor-
mance deterioration. This is in accordance with the observation
in [5] and similar to the results in DNN-HMM [4] and LSTM-
HMM [5]. Meanwhile, VFR leads to significant degradation
with speed-up rate (2X).

Compared with PSD, FS shows competitive efficiency. The
reason is that FS speeds up both neural network propagation
and WFST search4, while PSD mainly deals with the latter one
(and it speeds up more in the latter one). However, PSD can
be further combined with FS. In this way, PSD+FS in Table V
shows much better efficiency compared with both PSD and
FS (accumulatively 4-5X speedup on FSD). It is inspiring that
feature level and model level frame rate changing methods can
be combined together to achieve better gains.

4It is worth noting that, in [4] and [5], the traditional frame skipping and
posterior copying can only speed up neural network propagation.

TABLE VI
WER PERFORMANCE OF DIFFERENT PSD DECODING METHODS

WITH CTC LATTICE

PSD with CTC Lattice

Testset Integrated Modular

hub5e-swb 18.7 18.5
rt03s-swb 34.5 34.1

Fig. 8. Phonemic Error Robustness of Different Decoding Methods. For
clarity, only hub5e-swb is plotted and the rest sets have similar trends.

4) Bottom-up Modular Search with CTC Lattice: Bottom-
up modular search with CTC lattice was implemented based on
WFST composition as described in section IV-B1.

Results in Table VI show consistent WER improvement com-
pared with the integrated PSD search in the previous section.
The reasons are mainly two folds. Firstly, there is no search
error in modular method, while beam search is the main source
of search error in integrated method. Secondly, as indicated in
III-B, CTC lattice is compact and precise, which is the main
superiority to prior works [14], [46], [30], [17]. However, since
there is no other knowledge source introduced except for acous-
tic and language model, the improvement is mild.

To further investigate the relationship between final WER and
OPER of CTC lattice, integrated and modular search were per-
formed on CTC lattice with different qualities. The comparison
on the hub5e-swb test set is shown in figure 8.

It can be observed that modular search is consistently bet-
ter than integrated search on different OPERs. Also, WER of
modular search has less fluctuation w.r.t. OPER. The reason
is that modular search is performed on CTC lattice generated
without search error in acoustic space, while integrated beam
search introduces random search errors during CTC lattice gen-
eration. Since the final performance of modular search is more
reliably related to OPER of CTC lattice, improving OPER is
very likely to improve WER as well. Besides, modular search
also keeps large improvement space for combination with richer
knowledge sources (e.g., phonemic error model [15], prosody
model [14]).

C. KWS task

A speaker-independent 5k vocabulary dataset of the Wall
Street Journal (WSJ0) corpus [47] was used to evaluate the
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TABLE VII
KEYWORD-FILLER HMMS VS. LSTM-CTC USING PSD WITH MED

Model #Param Search EER FOM S-RTF RTF

GMM-HMM 5.4M FSD 6.4 71.8 — —
DNN-HMM 2.0M 5.1 75.5 0.036 0.074
LSTM-CTC 813K PSD+MED 3.5 85.2 0.005 0.031

proposed CTC lattice based KWS. Words or phrases which
appear at least 5 times and whose length is between 3 and 12
phones were randomly selected as the keywords. In total, 50
keywords were used. The evaluation metrics are Equal Error
Rate (EER) and Figure of Merit (FOM) [48]. For EER values,
smaller is better. For FOM values, larger is better. Both EER
and FOM are obtained by sweeping fixed thresholds.

24-dimensional log filter-bank coefficients with their first and
second derivatives at 10 ms fixed frame rate was used to build
the LSTM-CTC model. To accelerate KWS, LSTM Projected
(LSTMP), was used [42]. The LSTM consists of 2 hidden layers
with 384 memory blocks per layer, and the size of the linear
projection layer is 128. The output label of LSTM are 69 phones
from the CMU pronunciation dictionary plusblank symbol, and
wb symbol to model word boundaries.

For performance comparison, conventional keyword-filler
HMMs [49] were trained as baselines. The keyword models
estimate the keyword likelihood given observation feature se-
quences, and the filler model represents all non-keyword speech.
The keyword-filler HMM topology is identical to the one used
in [50]. Through Viterbi decoding, if the best path passes a
keyword model then the corresponding keyword is determined
as detected. The EER and FOM were obtained by sweeping the
transition probabilities between keyword and filler models. This
transition probability can be regarded as the prior of keywords.
Clustered cross-word tri-phone HMMs were used as baselines5.
A GMM system with 40 Gaussian mixtures and a DNN sys-
tem of 4 hidden layers with 512 nodes per layer were built.
The acoustic feature for GMM is 13-dimensional cepstral mean
normalized MFCC coefficients with their first and second order
derivatives. DNN has an 11-frame context window with 5 ex-
tended frames on the left and right. Both HMM systems have
1689 clustered triphone states.

The performances of different KWS systems are shown in Ta-
ble VII. Here, keyword-filler structure is compiled into WFST
form and used for frame synchronous decoding with GMM-
HMM and DNN-HMM systems. Word boundary is used in
LSTM-CTC model [40] and PSD with MED based pattern
matching approach is employed as described in section IV-B2.
In calculation of S-RTF and RTF, we only consider single key-
word detection speed. The results indicate that the proposed
KWS approach using PSD and MED based pattern matching
achieves significant gains over the traditional Keyword-Filler
HMM approach (around 30% relative EER reduction, and 12%
relative FOM increase), demonstrating the effectiveness of the

5Since the KWS task in this paper concerns unrestricted keyword vocabulary,
keyword-specific approaches such as [50] are not appropriate baselines.

proposed methods. Besides, the LSTM-CTC model also has
much less parameters than the baselines.

It can also be observed that DNN-HMM system is 2.4 times
slower than the LSTM-CTC system6. Firstly, this is because
LSTM-CTC has 60% less parameters in its acoustic model.
Secondly, the Keyword-Filler structure in [50] results in large
search space especially for systems with clustered tri-phone
states (context-dependent). In contrast, due to the use of PSD
and MED-based phone lattice pattern matching method, the
KWS searching speed of LSTM-CTC is 7.2 times faster. It is
worth noting that with the current MED-based matching algo-
rithm, decoding time grows linearly with the number of prede-
fined keywords. Hence, if multiple keywords are to be detected
simultaneously, the PSD+MED algorithm will be slower than
the Keyword-Filler decoding approach. However, in common
business applications (e.g., Google voice search [51]), the num-
ber of keywords is usually small and this increase is not likely
to be a big issue.

VI. CONCLUSION

The output of CTC model is usually peaky and this results in
large number of blank frames during decoding. These blank
frames do not change the linguistic search space and search
at these frames are therefore redundant. In this paper, by re-
moving the blank frames from linguistic search space, tradi-
tional frame synchronous decoding (FSD) can be transformed
into phone synchronous decoding (PSD). PSD can be viewed
as a hybrid decoding framework of beam search and A* search
because of its self-adjusted decoding interval to remove tremen-
dous search redundancy due to blank frames from CTC-trained
model. With PSD, compact and precise phone-level CTC lattice
can be produced. Two modular search approaches based CTC
lattice are proposed for LVCSR and KWS tasks respectively.
Experiments show that PSD can achieve 3-4 times decoding
speed-up compared to traditional FSD, with no performance
deterioration. It can also be combined with feature level frame
rate changing method to get further speed-up. With CTC lat-
tice, in LVCSR task, modular search can achieve further WER
improvement over integrated search and is more convenient
to incorporate other knowledge sources. In KWS task, experi-
ments demonstrated that MED based pattern matching on CTC
lattice can significantly improve the KWS accuracy as well as
the matching speed compared with the traditional keyword-filler
structure. Future work will explore more usage of CTC lattice,
such as integrating CTC lattice with more knowledge sources to
fulfil the distinct OPER performance of it, e.g., phonemic error
model [52], prosody model [53] and more complex language
model [36], [37], [54], [55]. Besides, it is promising to apply
PSD framework in HMM topology model, e.g., LF-MMI [27].
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[11] D. Rybach, R. Schlüter, and H. Ney, “A comparative analysis of dynamic
network decoding,” in Proc. 2011 IEEE Int. Conf. Acoust., Speech, Signal
Process., 2011, pp. 5184–5187.
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