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ABSTRACT

Robustness to errors produced by automatic speech recog-
nition (ASR) is essential for Spoken Language Understand-
ing (SLU). Traditional robust SLU typically needs ASR hy-
potheses with semantic annotations for training. However,
semantic annotation is very expensive, and the correspond-
ing ASR system may change frequently. Here, we propose a
novel unsupervised ASR-error adaptation method, obviating
the need of annotated ASR hypotheses. It only requires se-
mantically annotated transcripts for the slot-tagging task and
the transcripts paired with hypotheses for an input sentence
reconstruction task. In this method, feature encoders which
share part of the parameters are exploited to enforce the tasks
in a similar feature space. Therefore, the transcript side slot-
tagging model can be transferred to ASR hypotheses side eas-
ily. Experiments show that the proposed approach can yield
significant improvement over strong baselines, and achieve
performance very close to the oracle system.

Index Terms— Spoken Language understanding, ASR-
error robustness, adversarial adaptation

1. INTRODUCTION

The spoken language understanding (SLU) module is a
key component of spoken dialogue system (SDS), parsing
user’s utterances into corresponding semantic concepts. For
example, the utterance “Show me flights from Boston to
New York” can be parsed into (fromloc.city_-name=Boston,
toloc.city_name=New York) [1]. Typically, the SLU problem
is regarded as a slot tagging task. We focus on slot tagging in
this paper as well. With sufficient in-domain data and deep
learning models (e.g. recurrent neural networks, bidirec-
tional long-short memory network), statistical methods have
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achieved high performance in the slot tagging task recently
[2, 3, 4].

Most of the previous work about SLU only focuses on
utterance transcripts by ignoring Automatic Speech Recog-
nition (ASR) errors. The SLU system trained on transcripts
would get a significant decrease in performance when used on
ASR hypotheses [5]. To improve system robustness, the tra-
ditional method requires sufficient data of labelled ASR hy-
potheses for training. However, SLU annotation on hypothe-
ses is a labor-intensive and time-consuming task [6]. More-
over, the slot-tagging annotation on the hypotheses might be
renewed when ASR system changes, since the hypotheses
may change as well. Tur et al. [7] investigated slot tagging
on ASR hypotheses with semantically annotated bins of word
confusion networks. This method automatically creates a an-
notation on hypotheses by an ASR alignment trick for training
data, while the automatic alignment may create wrong data
samples.

Decreasing SLU performance on ASR hypotheses stems
from a mismatch of semantic distribution between train-
ing and evaluation. We propose an unsupervised adaptation
method to transfer slot-tagging model trained on the tran-
scripts to hypotheses. In this method, semantically labelled
transcripts are exploited for the slot-tagging task. Utterance
transcripts and hypotheses are used for an unsupervised task
(e.g. language modelling). The slot-tagging task shares part
of parameters with the unsupervised task so that it could
switch from transcribed sentences to ASR hypotheses. More-
over, an adversarial training trick [8] is used to force the
shared parameters task-invariant.

We are the first to investigate unsupervised ASR-error
adaptation problem for slot tagging without annotation on
ASR hypotheses. It would potentially be useful for the de-
ployment of commercial dialogue systems. We propose an
adversarial adaptation method for ASR-error adaptation prob-
lem in SLU, exploiting pairs of the utterance transcript and
ASR hypotheses. The experimental results show that our
method outperforms the strong baselines significantly.

ICASSP 2018



The rest of the paper is organized as follows. The next
section describes the framework of unsupervised ASR-error
adaptation method. Experiments are presented in section 3,
followed by relations to prior works and conclusions.

2. UNSUPERVISED ASR-ERROR ADAPTATION

In this section, the details of unsupervised ASR-error adap-
tation are given. This method only requires semantically an-
notated transcripts for slot tagging and raw transcripts paired
with ASR hypotheses for the ASR-error adaptation, obviat-
ing the annotation on the hypotheses. The corresponding data
sources used in this method are described as below:

e tag: utterance transcripts with the annotations of slot-
tag sequence.

e tscp: utterance transcripts.

e asr: utterance hypotheses given by ASR system.

2.1. BLSTM Encoder

We use a bidirectional LSTM (BLSTM) [9, 10] model as the
encoder of input. Let e,, denote the word embedding for each
word w, and @ denote the vector concatenation operation.
The encoder reads the input sentence w = (w1, wa, ..., Wr)
and generates 71" hidden states of BLSTM:

hi:ﬁi@m; E:fl(mvewi); z:fr(maewi)

where E is the hidden vector of the backward pass in BLSTM
and ﬁz is the hidden vector of the forward pass in BLSTM at
time ¢, f; and f, are LSTM units [11] of the backward and
forward passes respectively.

Following the notation in [8], we write the entire opera-
tion as a mapping BLSTMg (O refers to the parameters):

(hlhT) = BLSTM@ (wl...wT)

2.2. Unsupervised Adaptive Learning

In the unsupervised ASR-error adaptation, we exploit SLU
annotation on utterance transcripts instead of ASR hypothe-
ses. Our approach closely follows the previous work on un-
supervised neural domain adaptation [12, 13, 8]. The major
difference is that we make the encoders of slot tagging and un-
supervised reconstruction tasks different. Therefore we have
four BLSTM encoders, as shown in Figure 1:

e O9: produces features which are specific for slot tag-
ging task.

e OP: produces features which are specific for the tran-
scripts side unsupervised task.

Slot tagging [Reconstruction] = -[Reconstruction]

[BLSTMgtag| | | [BLSTMgtscr] [BLSTMges| | gy
Mno----——-— = ™ Tem—m— = T e | .l
0 BLSTM ;sha BLSTM BLSTM g sha
t t t
Labelled transcript ~ Transcript ASR hyp

Fig. 1. Architecture of the proposed method which includes
three tasks: transcript side slot-tagging, transcript side and
ASR-hypotheses side reconstructions. The framework con-
tains four BLSTM encoder for feature learning, one of which
is shared by three tasks and the others are private for each
task.

e ©%T: produces features which are specific for the ASR
hypotheses side unsupervised task.

e ©%"?: produces task-invariant features.

The architecture of our method is illustrated in Figure 1.
The word embeddings are shared in theses encoders. Now we
define three loss functions for the ASR-error adaptation: (1)
slot tagging, (2) reconstruction (unsupervised), (3) adversar-
ial domain classification.

2.2.1. Transcript side tagging loss

The most important objective is to minimize the slot tagging
error on labelled transcripts. Let w = (w;...w7) be an utter-
ance transcript labelled with labels y = (y1...yr). We pro-
duce

(Ri"9...h429) <~ BLSTMras (W)
(R h5h )« BLSTMgna(W)

Then we define the probability of slot tag y for the i-th
word as

Zi = Wtagﬁi + btag; p(y|ﬁl) S8 exp([zz]y)

where h; = h* @ b, Wi,, and by,, are the weighted
matrix and bias vector of output layer respectively. Let Q¢%9
denote {Wiag, biag }. The tagging loss function is given by a
negative log-likelihood

Ltag((atag7 @shd’ Qtag) — _ Z Zp(yzlﬁz)
(wy) @
2.2.2. Reconstruction loss

We also ground feature learning by reconstructing encoded
sentence in an unsupervised way. By adding sentence re-
construction task for both transcripts and ASR hypotheses,
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it enforces BLSTM encoders to be close in the parameter
space. Kim et al. used an attention-based sequence-to-
sequence (S2S) [14] that fully re-generates the input sentence
[8]. In contrast, we propose to use a bidirectional language
modelling (BLM) for producing of the input sentence, which
is more efficient.

Let w = (wi...wr) be a sentence in data source d €
{tscp, asr}. With the relevant encoders, we have

(h{...h%) < BLSTMga (W)
(hihd~-~h%hd) — BLSTM@shd (W)

F <__i . . .
The concatenated vector bl = h¢ @ h is fed into a sim-
ple feed-forward neural network (FFN) with only one layer to

predict the last word, and h = h¢ & h3"? is fed into another
FFN to predict the next word. We use {2"“ to denote the pa-
rameters of these two FFNs. The reconstruction loss is given
by the negative log likelihood

rec d shd rec l r
L@, 0%, Q7) = — 3 N “(p(wi—1|hi) + p(wit1]h]))
weDg i
where d € {tscp,asr}, wy is a sentence start tag <s> and
wr41 is a sentence end tag </s>.

2.2.3. Adversarial task classification loss

The intuition is that the more task-invariant features we have,
the easier it is to benefit from the transcript side training when
decoding on the ASR hypotheses side. Following the pre-
vious work [8], we use random prediction training to force
the shared encoder task-invariant. This adversarial training
method makes the shared BLSTM encoder to be ASR-error
robust by incorporating with the above reconstruction task.

Let w = (wi,...,wr) be a sentence in data sources
{tag, tscp,asr}. With the shared encoder, we have the hid-
den states

(h3"...h3") < BLSTMgena(W)

where h3"? is fed into a task classifier which is a single layer
FFN. Let Q4% denote the parameters of this classifier. There-
fore, the adversarial loss can be formulated as

,adv (GShd, Qadv) - _ Z Zp(ti|hfhd)

where ¢; is randomly set to be tag, tscp, asr with equal prob-
ability.

2.2.4. Joint objective function
For the unsupervised ASR-error adaptation, we optimize

L :Ltag (@tag7 (__)shcl7 Qtag) + Lr«ec(@tscp7 @shd7 Qrec)

(1)
+ L'r‘ez:(@as’r’7 @shcl7 Qrec) + Ladv (@shd’ Qadv)

In decoding stage, we use the encoder ©'%9 and the slot
tagger %9 on the ASR hypotheses to predict the slot-tags.
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3. EXPERIMENTS

3.1. Dataset

In order to evaluate our proposed model, we conduct exper-
iments on a dataset which is collected from a Chinese com-
mercial dialogue system in the domain of car navigation. It
contains 9008 utterances in total, as shown in Table 1. We
randomly select 60% of the training data for model train-
ing, another 20% for validation and the remaining 20% to
be test set. The training and validation sets for slot tagging
are labelled on transcripts, and the test set is labelled on ASR
top-hypotheses. For building an oracle baseline, the training
and validation sets are also labelled on ASR top-hypotheses.
There are 13 different slots included. For slot tagging, we fol-
low the popular In/Out/Begin (IOB) representation as label.

data partitions #sentence | CER
labelled transcripts (tag) || 7,205

train+valid transcripts (tscp) 7,205 21.52
ASR top-hyp. (asr) 7,205

test labelled ASR top-hyp. 1,803 23.47

Table 1. Sentence numbers (#) and CER (Chinese Character
Error Rate of speech recognition) of different data partitions
in the dataset.

3.2. Experimental Settings

We do slot tagging on Chinese character level since Chi-
nese word segmentation may introduce alignment errors in
a closed dialogue domain. The ‘word’ below refers to Chi-
nese character. We deal with unseen words in the test set by
marking any words with only one single occurrence in the
training set as (unk). For BLSTM, we set the dimension of
word embeddings to 100 (the vocabulary size is 1391) and
the number of hidden units to 200. Only the current word is
used as input without any context. For training, the network
parameters are randomly initialized in accordance with the
uniform distribution (-0.2, 0.2). The dropout with a probabil-
ity of 0.5 is applied to the non-recurrent connections during
the training stage. Maximum norm for gradient clipping is
set to 5. We use Adam optimizer following the suggested
parameter setup in [15].

The learning rate is initialized to be 0.001. We keep the
learning rate for 100 epochs and save the parameters that give
the best performance on the validation set. The metric used is
F}-score calculated using CoNLL evaluation script. !

We investigate our method with different combinations of
the loss functions in Section 2.2. For comparison, we also
set and implement several strong baselines and even oracle
systems as follows:

Uhttp://www.cnts.ua.ac.be/conl12000/chunking/output.html



e Baseline;: It is trained and validated on the transcript
data with SLU annotation, using only transcript side
slot-tagging loss L% in Eqn. (1).

e Baselines: Traditional robust SLU method creates an-
notation on ASR hypotheses by the alignment trick
[7]. Similarly, a word alignment between transcript
and ASR top-hypotheses is performed by using the
text alignment tool in Kaldi 2 to deliver slot tags from
labelled transcript to top-hypothesis. With the auto-
annotated ASR hypotheses and the transcript data,
another baseline model is trained by using only loss
L*%9 in Eqn. (1).

e Oracle;: It is trained and validated on the data of ASR
top-hypothesis with SLU annotation, only supervised
by L9 in Eqn. (1).

e Oracles: It is trained on both SLU annotated transcripts
and ASR top-hypotheses, only supervised by L!*9 in
Eqn. (1).

e Domain adaptation: The unsupervised domain adapta-
tion [8] is applied to the ASR-error adaptation, which
assumes O = ©!P in Eqn. (1). This method treats
the data of transcripts (including slot tags) as a source
domain, and unlabelled ASR hypotheses as the target
domain.

3.3. Experimental Results and Analysis

In this section, we evaluate our systems with different com-
binations of loss functions and compare them with several
baseline systems. From Table 2 we can see a gap (2.75%) be-
tween slot tagging systems trained on transcripts (Baseliner)
and ASR top-hypotheses (Oracle;). By combing the la-
belled transcripts, Oracles obtains an additional improve-
ment (0.99%) over Oracle;. By incorporating the auto-
annotated ASR hypotheses, the performance of Baselines
decreases, because the word alignment may cause wrong data
samples for slot-tagging.

In our systems, bidirectional language modelling (BLM,
row (h)) outperforms other two reconstruction tasks: W2W
3 (row (f)) and S2S (row (g), as indicated in Section 2.2.2).
Our system with BLM (row (h)) also achieves a significantly
better result (significant level 96%) than the domain adapta-
tion method [8] (row (e)), which may benefit from separated
encoders for tagging and reconstruction tasks (i.e. ©%9 is
different with ©%5P).

Compared to the system with BLM (row (h)), the sep-
arated reconstruction models (row (i)) cause a decrease in
Fl-score. By incorporating the adversarial task classifica-
tion loss, out method can achieve the best performance (row

Zhttp://kaldi-asr.org/doc/align-text_8cc.html
3SW2W simply reproduces the current word at each time step by
p(w;|hL, k) as indicated in Section 2.2.2.

7

(j)) outperforming all baseline systems and being very close
(-0.53%) to the oracle system, due to the parameters shar-
ing among tasks of transcript side slot-tagging, transcript and
ASR hypotheses reconstructions.

system [ Rec. [ F1-score
(a) Oracle; (L%9) - 84.65
(b) Oracley (L'*9) - 85.64
(©) Baseline; (L'9) - 81.90
) Baselines (Lt%9) - 78.71
(e) Domain Adaptation S2S8 82.52
® LT e W2W 82.82
(2) L9 4 [ee S2S 83.31
(h) Lte9 4 [ree BLM 84.87
@ Lt 4 [ee BLM?®¢P 84.02
G) | L' 4 L™ + L*” | BLM 85.11

Table 2. Comparison of the oracle systems, baselines, and
our method. Different reconstruction tasks are also evaluated:
W2W 3, S2S, BLM (as indicated in Section 2.2.2). BLM?*¢P
refers to the separated reconstruction models of BLM.

4. RELATION TO PRIOR WORK

Our work benefits from the recent success of domain adap-
tation in the neural network. An adversarial training method
for unsupervised domain adaptation was firstly proposed in
the area of computer vision [12, 13]. This method splits
the model parameters into two parts: domain-specific fea-
tures which are private and domain-invariant features which
are shared. The domain-invariant parameters are adversari-
ally trained by reversing gradient to make domain classifier
poor and domain agnostic. The adversarial domain adap-
tation method is also applied in sentence classification [16]
and spoken language understanding (SLU) [8]. We are the
first to investigate the ASR-error adaptation for SLU by ad-
versarial adaptation method and propose the unsupervised
task-adaptation architecture for robust SLU. Meanwhile, we
incorporate a novel bidirectional language modelling (via
forward and backward respectively) as the unsupervised task.

5. CONCLUSION

In this paper, an unsupervised ASR-error adaptation method
is proposed for slot tagging task to improve the robustness of
SLU model. We newly incorporate adversarial task adapta-
tion method and bidirectional language modelling to transfer
a SLU model from transcript to ASR hypotheses. This ap-
proach doesn’t require semantically annotated ASR hypothe-
ses, which can save the workload of data annotation and has
potential advantages for deployment of the commercial sys-
tem. Finally, the experimental results show that our method
can achieve a significant improvement over the strong base-
lines, while still being resilient to ASR-errors.
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