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field of machine translation. The method employs a recurrent
neural network (RNN), usually long short term memory [12]
network (LSTM) or gated recurrent unit [6] (GRU), to map
the input sequence to a vector of a fixed dimensionality, and
then another RNN to decode the target sequence from the
vector. GRU is used in this paper as it achieves comparable
performance against LSTM with less computation [13]. A
GRU is defined as:

re = o(Wyxy+ U hi_q) (1
zi = o(Wyxy+U.hi_q) 2)
hy = tanh Wax, +U(r; © hy_1)) 3)
hi = ziOhi 1+ (1—2)Ohy “4)

where x, is the input word embedding vector at time ¢, hy
is the output hidden state vector, r; is the output of the reset
gates, z; is the output vector of the update gate, W and U are
weight matrices and ® denotes element-wise product. From
the above formula, GRU can take in a variable-length sequence
of vectors {xy,--- , @7} and convert them to a fixed-length
vector hr. This recurrent calculation characteristics makes it
suitable for sequence modelling.

In sequence-to-sequence training, the encoder part is usually
a standard GRU to map a sequence into a fixed-size sentence-
level context vector. In contrast, the decoder takes the context
vector as an additional input and generates the output sequence
word by word. The formula of the decoder GRU are similar
to equations (1) to (3) except for including the context vector
as additional input. For example, given h(Te ) as the encoder
output vector, equation (1) of the decoder can be rewritten as

ry =o(Wyx, + U hy_1 + Crcy) )

where C' is weight matrix of context vector and ¢; = hg? ) is
the sentence-level context vector.

A widely-used extension of the encoder-decoder framework
is to employ the atfention mechanism [7], which replaces the
constant context vector hgf’) with a time-dependent context
vector. The time-dependent context vector ¢; is constructed
using weighted sum of all hidden state vectors of the encoder.
The weights can be seen as a distribution to describe the rele-
vance between all encoder hidden state vectors and the current
hidden state vector of the decoder. There are many ways to
compute the context vector and a popular implementation [14]
is used in this paper:

€ty — hEd)TWChl(ve) Ay = M (6)
> op—1 exp(esk)
T
ce = Y ayh® (7
=1

where hid) and hl(te) are hidden state vectors at time ¢ of
the decoder and the encoder respectively, T' is the total
length of the encoder input sequence and c; is final context
vector at time ¢. Sequence-to-sequence learning with attention
mechanism has already been successfully applied to many
tasks, such as machine translation [7], question answering [15]
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and so on. It has also been applied to short text conversation
(STC) [3]. An example is depicted in Fig. 1.

Fig. 1: Sequence-to-sequence Learning with Attention for
Generation-based STC

However, when used for STC, the above encoder-decoder
framework tends to generate short and dull responses. This
phenomenon is due to the nature of conversation. Different
from machine translation, where source sentence and target
sentence express the same meaning in two different languages,
or machine summarization, where the summary text is basi-
cally a fragment of the source document, the response for
a post in STC would introduce additional information that
may not appear in the post and require external knowledge
to understand. What’s more, the additional information can be
arbitrary, as long as it is relevant to the post. Thus, there might
exist multiple suitable responses for a single post. In contrast,
target text almost only varies at the surface level, i.e. lexicon or
grammar, for machine translation or machine summarization.

Due to the semantic distinction, the comment distribution
of short text conversation is very complex and highly variable.
It is hard for a sequence-to-sequence model to accurately
capture the semantic mapping from post to comment, as
external knowledge may be required for this kind of mapping.
Moreover, the cross entropy training criterion, which optimizes
the KL divergence between the true data distribution and the
model distribution, tends to fit all modes of the data distribu-
tion. This tendency makes the mode of the model distribution
appear in a less-likely area when the model capacity is
lower than the complexity of the data distribution. Meanwhile,
compared to a language model trained on comments, the
perplexity reduction from a sequence-to-sequence model is
smaller. This phenomenon means that a post may not provide
enough information to generate the corresponding comment.
Therefore, general responses without substantiality may get
high probability and be frequently generated.

[16] proposes to modify the basic encoder-decoder frame-
work to generate high-quality and informative conversation
responses. A self-attention mechanism is added to the decoder
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to maintain coherence in longer responses, and a stochastic
beam-search algorithm with segment-by-segment reranking is
introduced to inject diversity earlier in the generation process.
Although this type of strategy is effective in generating longer
and informative responses, it can not ease the problem we
describe above totally. A general approach to solve the dull
response problem is to provide additional information to the
decoder. [17] utilizes a topic model to extract relevant topic
words of the post. These extracted topic words are meaningful
and considered to be very likely to appear in the responses.
The decoder would focus on the additional topic words and is
encouraged to generate the additional topic words. In addition
to word-level supplementary information, [18] and [19] exploit
sentence-level supplementary information and combine the
generation model with a retrieval-based model. [18] retrieves
the most similar post in the corpus and takes the corresponding
response as another input to the decoder. [19] preserves
relevant external facts about the entity in the conversation
history in a memory network. The decoder then pays attention
on the memory and automatically select the useful information
for generation.

Although these methods enhance the model and produce
better results due to the additional information, these methods
are not controllable. What’s more, when beam search is used
during decoding, the diversity of candidates in a beam are
known to be small. Consequently, the generated responses
candidates of the above methods are usually similar and
differences mainly lie at surface level. The inherent reason
for lacking diversity is that these methods ignore the fact
that there exist multiple suitable responses for the same post.
When we chat with others, we understand what the other
person says first, then decide what to reply, and express it in
nature language. The second step involves external knowledge,
such as common sense, background knowledge and personal
preference. This is the most important factor for diversity of
the responses. An ideal conversation system should imitate the
controlled generation process.

There have been a few relevant works addressing this issue.
The method proposed in [19] retrieves some “facts” given
the post and then takes them supplementary materials for
generation. The idea of introducing external data related to
the post is very similar between [19] and our work. However,
our work focus on external semantic memory construction
to better use external data while [19] concentrates more on
exploitation of different variants of the multi-task system. For
the controllability of conversation, [20] and [21] study control-
lable sequence-to-sequence frameworks for conversation and
achieve interesting results. However, they can only control
emotion or tense rather than semantics which is essential in
the STC task.

In order to imitate the process of conversation, we should
find the semantics of the response before generating the
final responses. However, there is no well designed semantic
representation for open domain conversation. [22] [23] [24]
adopt a two step generation framework and regard keyword(s)
in response as an alternative semantic representation for re-
sponse. [22] first generates a keyword according to point
mutual information, then uses the backward-forward method

to make the keyword appear in the response. Similar to [22],
[23] propose an implicit content-introducing method which
utilize the auxiliary cue word information implicitly through a
hierarchical gated fusion unit. The cue words are incorporated
into the generation process but they do not necessarily appear
in the response. In contrast, [24] first generates a sequence
of keywords, which is the noun sequence of the response in
training, then generates the final response according to the
post and the noun sequence. In these models, the semantic
representation are the exact keyword(s). This representation is
very limited. What we actually care about are not the exact
keywords, but the reply contents which are linked to these
keywords. Also, these methods can not fully solve the diversity
problem since multiple keyword sequences from beam search
are still similar.

III. EXTERNAL MEMORY GUIDED
SEQUENCE-TO-SEQUENCE LEARNING

In this work, we combine the advantages of [19] and [22]
and propose a new sequence-to-sequence learning approach
for STC. A tensor, in the form of a list of matrices, is
constructed to represent the semantics of the comment sen-
tences, referred to as external semantic memory. Each matrix
represents all possible comment sentences corresponding to a
specific semantic key. Each row vector of the matrix forms a
sentence embedding basis and all row vectors span the whole
comment semantic space of the specific semantic key. During
generation, a semantic key is extracted from the input sequence
and used to construct a comment sentence embedding from
the external memory. The final comment is then generated
using the embedding from external memory as well as the post
sequence embedding with a sequence-to-sequence model. By
manipulating the semantic keys, it is possible to interpretably
guide the topics or the semantics of the comment.

A. General Framework

This External Semantic Memory Guided Sequence-to-
Sequence Learning framework consists of three components:
an encoder E, a decoder D and an external memory M. Fig.
2 depicts the general framework and the information flow.

An external memory is introduced into the standard encoder-
decoder framework, which is assumed to be constructed using
large amount of data (possibly unsupervised) outside the train-
ing dataset. Hence, M can be regarded as an explicit storage of
external knowledge, which enables the encoder-decoder model
to use knowledge outside the post or even training data. The
usage of the external memory is similar to how we chat with
each other. We usually focus on some specific semantic keys
(e.g. keyword or topic) of a sentence and then think about the
related semantics given our goal or background knowledge
(memory), and finally compose a response sentence based
on the newly composed output semantics. We simulate this
process using the external semantic memory module. First, the
external semantic memory is constructed and indexed using
semantic keys. When generating a response, we first get the
output semantic key and address the memory blocks to obtain
the embedding for the output. Finally, the decoder model
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Fig. 2: General Framework of Controllable Short-Text-Conversation Generation with External Memory

generates the comment based on both the input post embed-
ding and the extracted output sentence embedding from the
external memory. The whole framework of encoder-decoder
with external memory is formulated as below.

Let 1.7 = {21, 29,...,27} represent the embeddings of
words in post, where 7' represents the length of post. The
encoder module E, receives word embeddings produces a
dense representation p of the input post sentence and a set
of context vectors ¢;.7 = {c1,¢2,...,cr} (¢ for short), in
equation (8). In this paper, we simply use a uni-directional
GRU as the encoder.

®)

We then extract the semantic keys from the input sentence. A
typical semantic key is just a word or a phrase, although a
distributed representation of the topic can also be used (which
will be discussed later). In this paper, only nouns, adjectives,
and idioms are chosen as the semantic keys. The LTP tool!
[25] for POS tagging is used in this step. Usually, multiple
semantic keys can be extracted from the post, referred to as
the input semantic key. We may choose anyone of them to
guide further comment generation process. By manipulating
the input semantic key, such as iteratively or randomly choose
one input semantic key, we may generate diverse comments
with different semantic preferences. Once an input semantic
key k() is found, it is fed into a semantic key mapper S to
be converted to the output semantic key k(°):

k) — S(k(i))

p,cr.r = E(z1.7)

)

The semantic key mapper S can be trivial, e.g. directly
using the input-side semantic key as the reply-side semantic
key, i.e. k©© = k(). Alternatively, it can be complex, e.g.
using a synonym, or a word with nearest embedding, or a
word inferred from knowledge graph etc. In case of using a

https://github.com/HIT-SCIR/1tp

topic vector as the semantic key, the external memory topic
vector closest to the post topic vector can be chosen. More
aggressively, it is even possible to manually make up an
output semantic key regardless of the input and force the
latter generation process to use it. This will be discussed in
the experiment section. In summary, the semantic key mapper
enables controllability of the proposed model.

After determining the output semantic key, we need to use it
to index the external semantic memory M. M consists of K
memory blocks, where K is the number of all possible output
semantic keys. Each output semantic key corresponds to an
address, or index, of a memory block. Each memory block
is a L x D matrix m associated with a particular semantic
key, where L is the number of rows representing the number
of the output sentence embedding bases, and D denotes
the dimensionality of the sentence embedding. According to
memory construction process (described below), D is the same
as the dimensionality of the input post embedding. A memory
reader R conducts reading process on the selected memory
block m to produce an external memory context vector 7

r = R(m,p) (10)
Inspired by Neural Turing Machine [26], we apply a content-
based addressing to the matrix of the chosen memory cell.
Given a post p, the reader R will return a weighted-summed
vector on the matrix m following equation (11) where w; is
given by equation (12) and m(i) denotes the i** row in matrix
m. [ in equation (12) is a coefficient to control the sharpness
of the weight vector [27]. To ensure the sharpness, the value
of (3 is set to 100 in this paper.

L
) = Zuam(l) (1n
=
eXP(ﬁme( )
J

S exp(BpTm() (12

wy
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After obtaining the memory context vector r, we duplicate
it for each input word instance and append it to the original
context ¢;.7 to form a new joint context vector set C'.

C= {leisrl,[exr], s [en ]}

During decoding, the decoder D generates the reply comment
(denoted as y) using context vector from both the post
sentence and the external semantic memory. In this paper, the
decoder is a uni-directional GRU with attention mechanism
on the joint context.

13)

y=D(p,C). (14)

The whole process of the external semantic memory guided
sequence-to-sequence learning is summarized in algorithm
1. It is worth noting that external memory construction is
independent of the encoder-decoder training. Given an external
memory, standard gradient descend algorithm can be used to
train the encoder-decoder model (with the memory matrix
m fixed) to maximize the sequence generation likelihood
P(ylz,r).

Algorithm 1 External Semantic Memory Guided Sequence-
to-sequence Generation

Receive an input post
Convert the post to a word embedding sequence x.7.
Extract the input semantic key k(%)
Map it to the output semantic key k(©) = S(k(%)
Find the associated memory block matrix m
Encode the post using the encoder
p, ci.v = E(z1.7)
Read the memory context vector from the external semantic
memory
r = R(m,p)
Append 7 to the original encoder context vectors
C = {[c1;7],[ca; 7], s [e; 7]}
Decode to generate the comment
y=D(p,C)

B. External Semantic Memory Construction

The previous section describes the general framework of the
proposed approach. In this section, external semantic memory
construction is introduced in detail.

The content of each memory block is a matrix including K
representative comment sentence embeddings corresponding
to a specific output semantic key. The “semantic key” can
be represented by a keyword (one-hot vector) or a topic
embedding vector. The address of each memory block is
the index of the associated output semantic key. In case of
keyword based representation, it is the keyword index of the
one-hot vector. In case of topic embedding vector, vector
quantization is applied first to discretize the topic embedding
space. The semantic key index is then the index of the resultant
code book. As shown in equation (9), output semantic keys
can be obtained by mapping the input semantic keys using the
semantic key mapper S.

The external semantic memory is constructed independent
of the training process of the encoder-decoder described in sec-
tion III-A. This separation allows us to incorporate information
outside the encoder-decoder training data. Both the employed
algorithm as well as the used data can be different from the
main encoder-decoder training. Since each memory block is
effectively a collection of sentence embedding vectors, an
encoder model is required. In this paper, depending on the data
for external memory construction, two different approaches are
used to find the encoder:

+ Encoder-decoder. Given parallel STC data where both
posts and comments are available, standard sequence-
to-sequence learning (with or without attention) can be
pre-trained. Here, the data can be different from the
data for the external semantic memory guided training
to incorporate external knowledge, but the data from
similar corpus are preferred. Once the training is done,
the decoder is discarded and only the encoder is used to
convert all comments in the training data into sentence
embeddings. Ideally, we want to encode the knowledge
of the post-comment pairs and the relationship between
posts and comments. We believe that using the encoder
trained from post-comment pairs to encode comments
can somehow capture the knowledge and relationship.
Additionally, it is also compatible with the generation
process since the external semantic memory is used in
encoder side.

o Auto-encoder. When post-comment pairs are not avail-
able, it is also possible to use large amount of non-parallel
sentences such as news, novel, or other text materials
to incorporate richer external knowledge. Here, auto-
encoder is trained on the non-parallel data set and convert
the data into sentence embeddings.

The sentence embeddings obtained using the above encoders
are regarded as the output comment embeddings. To build
the external semantic memory, we need to associate the
comment embeddings to output semantic keys. With the same
semantic key extraction approach as previously described,
we can obtain semantic keys for each comment embedding.
Then, these sentence embeddings can be grouped together
according to their semantic keys. Note that each sentence
may have multiple semantic keys. Hence, it is possible that
one sentence embedding may be put into multiple semantic
key groups. Once the grouping is done, we need to construct
a fixed-size memory block for each semantic key, i.e. select
the /X most representative sentences from all sentences inside
each group. To achieve this, we first use truncated SVD
[28] to perform latent semantic analysis (LSA) [29] on all
sentence embeddings in the same memory block and obtain the
projection vectors in the LSA space. K-means algorithm [30] is
then used on the projected vectors to form K clusters. Finally,
we select one sentence embedding (original embedding space)
for each cluster center whose corresponding latent projection
vector is closest to the center. In the case of the memory block
that has less than K sentences, we pad it with zero vectors.
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C. Encoder-decoder Training with External Semantic Memory

With the constructed external memory, the training proce-
dure can be divided into two parts: data pre-processing and
end-to-end encoder-decoder training.

1) Data Pre-processing: As mentioned above, one sentence
may be put into multiple semantic key groups in the memory
construction. The training data is also processed under the
same rule. As the training corpus is post-comment pairs (i.e.
input and output sentences), we filter the training pairs accord-
ing to their semantic keys. This filtering has two advantages:
1) more convenient for mini-batch training; 2) likely to filter
out some generic responses.

First we extract semantic keys of the input sentence, then
the semantic key mapper converts these keys into related
output semantic keys. The training pair will then be put into
different key groups based on the output semantic keys. It is
worth noting that one input post sentence may correspond to
multiple output comment sentences. By applying the grouping,
we semantically classify the post-comment pair according to
their output sentences, and remove many generic dull reply
comments.

2) End-to-End Training and Generation: The training pro-
cess follows the description in section III. During training,
the external semantic memory is fixed, hence it is essentially
an extra input to the decoder. The rest components of the
model is a standard encoder-decoder structure with attention as
shown in Fig. 2. We randomly select one reply-side semantic
key group from the training data, and then construct the
mini-batch. Note that, for each sample pair, we have already
known its external memory address, i.e. relevant comment-side
semantic key. The objective function for the encoder-decoder
is defined as

T
L= Zl(’gl’(yﬂyhtﬂ, x, k)

t=1

(15)

The objective function is fully differentiable w.r.t. the neural
network parameters. During the generation process, semantic
keys are first extracted from the post. If there are multiple
input semantic keys, they are used in turn to generate mul-
tiple comment candidates. These candidates are then sorted
according to their likelihood to yield the final top-1 or top-N
output.

IV. EXPERIMENTS

We use roughly 4.2 million pairs of STC data from Weibo
(Chinese version of Twitter) for encoder-decoder training. The
data set comes from the first and second STC challenges and
detailed descriptions can be found in [31] and [32]. The LTP
tool is used for word segmentation and POS tagging. The
same vocabulary of size 48773 is used for both posts and
comments covering more than 98% words. All the remaining
words are mapped to a special token “UNK”. Then the data
set is filtered as stated in section III-C.1 which reduces its
size to 1.5 million. All the data are used for external memory
construction while only 1.2 million pairs out of the data set
is used for training to show the potential of utilizing external
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corpora. 1000 pairs are held out from the data set as the test
set for objective evaluation.

We built three types of sequence generation systems:
the neural responding machine (NRM) [3] (i.e. the stan-
dard sequence-to-sequence training with attention), the multi-
resolution recurrent neural network (MrRNN) [24] and the
proposed external semantic memory guided encoder-decoder
model (ESED). For our model, we used three ways to construct
the external memory: the basic sequence to sequence model
(S25) [5], the sequence-to-sequence with attention (Atten) [7]
and an auto-encoder (AutoED) trained only on the comments
(this can be seen as utilizing the non-parallel corpus).

The encoder and decoder structures of ESED are the same.
It is a 1-layer GRU with 400-dimensional word embedding
and 800 dimensional hidden state vector. Nouns, adjectives
and idioms are used as the semantic keys. All parameters are
initialized with a uniform distribution between -0.05 and 0.05.
Adam optimizer [33] is used with an initial learning rate of
0.0004. The mini-batch size is set to be 64. For NRM, we use
the same dimensions of word embedding and hidden states as
our model. For MrRNN, we replace the HRED (hierarchical
recurrent encoder-decoder) model with LSTM and utilize both
nouns and adjectives as key words. All of these models are
trained multiple epochs to achieve the best valid perplexity.
Beam search is used during generation. It is worth noting that
for ESED, multiple input semantic keys are used in turn to
generate multiple comment candidates. We rank the candidates
in descending order of the length of semantic key because we
think the longer word contains much more information.

A. Diversity and Substantiality Analysis

In this paper, we propose two objective analysis measures
for STC: diversity and substantiality. Both of them can be
easily and directly computed from the generated comments
without knowing the reference comments. This avoids the
problem that the coverage of references may be very low in
the comment text space.

« Diversity reflects the richness of the words in the gener-
ated comments and defined as

#(unique words)

biv = #(all words)

(16)

The calculation is done for all test sentences by counting
the total number of words and the number of uniquely
appeared words. The basic assumption here is that the
richer the generated vocabulary is, the more diverse the
generated comments are. From the metric, it can be easily
seen, general replies without substantiality will reduce the
diversity metric.

o Substantiality reflects the substantial information con-
tained in the generated responses, which is defined as the
number of meaningful entities. We do not use name entity
recognition (NER) tools to extract entities because these
tools usually only identify people names, place names and
organization names, which is relatively limited. Instead,
we use maximum string matching algorithm based on
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the Wikipedia entity table? to identify meaningful enti-
ties. We define substantiality as the average entity word
number per sentence on the test set:

#(entity words)

Sub =
" #(sentences)

a7)

TABLE I: Diversity and Substantiality Analysis

Div Sub
Model Ext. Mem. Top-1  Top-5 | Top-1  Top-5
NRM 0.157 0.042 | 0478  0.475
MrRNN _ 0.184 0.076 | 0.360  0.398
S28 0.228 0.086 | 0.553  0.468
ESED Atten 0.232  0.088 | 0.520 0.460
AutoED 0.227 0.080 | 0.540 0.478

For each post in the test set, we select top-1 and top-
5 comments to calculate these two metrics. The results are
shown in Table I. ESED consistently outperforms the two
baseline models both in diversity and substantiality, and the
difference is statistically significant for top-1 results. For top-5
results, the diversity of ESED decreases less than the NRM
model which tends to generate similar and dull responses. This
shows the ability of ESED to generate more diverse and rich
comments. The reduction of substantiality from top-1 result
to top-5 result may be due to the reduction of information
contained in the semantic keys (longer semantic key is ranked
higher).

TABLE II: Controllable Short Text Conversation Examples

‘ Post ‘?*’ﬂ‘t*?!?@%—‘ﬁ‘ﬁ’?ﬂlﬂllﬁkiﬁﬁﬁ?!

Li Na is great! China’s first World Tennis Grand Slam champion!
FMAEERAZE]

Li Na is the world champion!

ESTRER R ]

Come on, Li Na. Come on!

Key-Word Response

Eis FI R ERFE]

world Li Na is the best in the world!

TH IR T B AR

China Li Na is the pride of China!

L3 SEEE TS SR

tennis China Tennis Open, come on!
BABEIRMRS FHERTFELERFE = REFGA,
A touching organ donation advertisement, please thank those who gave you a second life.
BRF-REFTHA.

A man who gives me a second life.

AR E—TA

Thanks for everyone!

Key-Word Response

EX BREFETH 01

life Thanks for everything given by life!
ESED | # % RMEE TR A -

organ Thanks for those organ donors.

TE (Y PN Y]

advertisement | A very touching advertisement!

NRM

MrRNN

ESED

Post

NRM

MrRNN

We believe the above performance gains of ESED is mainly
contributed by the use of semantic keys. Especially when
the training data for ESED is partitioned into post-comment
data pairs sharing the same semantic key, we are effectively
removing generic responses. To get a concrete idea of this,
some examples are given in Table II. From these examples, it
can be observed that both NRM and MrRNN tend to sensible,
safe but insubstantial answer, whereas ESED can use different
semantic key to generate more concrete and diverse comments
although some semantic keys can lead to unrelated comments.

The ESED model in Table I uses words (noun, adjective
and idiom) as the representation of semantic keys. It is also of

’https://www.wikidata.org/wiki/Wikidata:Main_Page

interest to compare this word-level semantic key to topic-level
semantic key.

Regarding the topic model used in our experiments, we
seek to train such a model that fit into the short text scenario.
Comparing to LDA [34], Biterm Topic Model [35] (BTM)® is
more effective at modeling short texts. Also, the model should
cluster the texts in a proper granularity: neither too general
(uninformative) or too specific (overfitting). Thus we choose
the different topic sizes (200 and 500) in experiments. The
detailed training procedure and settings are the same as the
original paper referred as above. We train the topic models
as described above first and assign each sentence a unique
topic by choosing the topic with maximum probability. We
assume that a trivial identity semantic mapper is used for topic
memory. Hence, we only need to estimate the topic for a post
and the semantic key index is just the index for the topic.
To investigate the effect of topic numbers, we set the number
of topics to 200 and 500 respectively. The diversity and the
substantiality performance of topic-level memory is shown in
Table III. For comparison, the comparable word-level memory
result is also listed.

TABLE III: ESED with Topic-level External Memory

Diwv Sub
Model | Ext. Mem. TopT Top3 | Top-T Top3
Word 0.232  0.088 | 0.520 0.460
ESED T200 0.217  0.063 | 0.397 0.406
T500 0.211 0.061 | 0.389 0.386

It can be observed that topic-level external memory per-
forms a lot worse than word-level memory. We believe this is
largely because the semantics of a topic is so vague that we
can not control the semantics of the generated comment well.
Also, there are no explicit relations between two topics, hence
it is also hard to define a meaningful semantic key mapper.
What’s more, since each sentence can only have one topic,
it is more difficult to post-comment pairs sharing the same
topic for ESED training. In fact, we observed that the number
of data pairs for training ESED with topic-level memory is
significantly smaller. All these contribute the degradation in
Table III. In the rest of the paper, we only focus on word-
level external memory.

B. Objective Evaluation of Reply Quality

In this section, we use BLEU score w.r.t. the reference com-
ment to calculate an objective measure to evaluate the reply
comment quality. The BLEU score [36] was first proposed
to evaluate the quality of machine translation. Recently, it
has also been used as objective indicator of reply quality in
dialogue system. The results are shown in Table IV.

It can be observed that for both top-1 and top-5 generated
comments, ESED achieves better BLEU scores than the base-
line models. Although it has been argued that the consistency
of BLEU score with human evaluation is poor when it is used
for dialogue system evaluation [37], consistent performance
gains still demonstrate the effectiveness of the proposed ESED
approach.

3https://github.com/xiaochuiyan/BTM
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TABLE IV: BLEU Score Comparison

Model Ext. Mem. Top-llgLEL"i"op- 3
NRM 10.8 10.9
MrRNN _ 9.0 7.4
S2S 11.7 11.7

ESED Atten 11.2 11.9
AutoED 13.2 13.2

C. Human Evaluation of Reply Quality

We also conduct human evaluation to compare the reply
comment quality of different models on the top-1 setup. We
follow the evaluation criterion of STC-2 challenge [32]. The
appropriateness of replies is judged from the following four
criteria:

(1) Fluent: the comment is acceptable as a natural language
text;

Coherent: the comment should be logically connected
and topically relevant to the original post;
Self-sufficient: the assessor can judge that the comment
is appropriate by reading nothing other than the post-
comment pair;

Substantial: the comment provides new information in
the eye of the originator of the post.

©))
3

“

If either (1) or (2) is untrue, the comment should be labeled
“L0”; if either (3) or (4) is untrue, the label should be “L1”;
otherwise, the label is “L2”. And in order to emphasize the
problem of dull responses (i.e. generic comment), we add a
special symbol “LD” to label reasonable but dull responses.
And when we compute the mean score, “L2” is 2 points,
“L1” is 1 point, “L0O” is O point. Specially, we count “LD”
as 0 points to encourage the system to generate diverse and
informative responses instead of universe responses. The final
average score is just the mean value of the scores from all
speakers on all test sentences.

TABLE V: Human Evaluation Results

[ Model [ Ext. Mem. [[ LD LO L1 L2 | Ave. |
NRM 10.7%  60.5% 16.3% 12.5% | 0.41
MrRNN - 4.8% 63.3% 19.7% 122% | 0.44

S28 5.0% 58.5% 17.2% 19.3% | 0.56
ESED Atten 6.3% 57.8% 16.5% 19.3% | 0.55
AutoED 7.8% 55.8% 19.2% 17.2% | 0.54

Our test set consists of 100 posts held out from the
training set. Six annotators score the generated responses
according to the above criteria. The results are shown in
Table V. For LD/LO/L1/L2, the number is the percentage of
generated sentences, Ave is the mean score. It is clear that
ESED models generate much less generic dull responses than
the baseline NRM models. Although ESED have larger LD
percentage than MrRNN, this might be because MrRNN tends
to generate many insensible answers. In general, ESED models
can generate more coherent and informative comments which
are appreciated by human. This is also consistent with the
conclusion in Table I.

IEEE TRANS. ON ASL, VOL. ?, NO. ??, 77777 2017

D. Analysis of Semantic Key Guidance

The previous sections have shown the effectiveness of the
ESED approach for STC. These experiments all employ a triv-
ial identity semantic key mapper function. The rich diversity of
the generated comments mainly come from multiple semantic
keys extracted from the same post. However, as stated before,
one major advantage of ESED is that it is possible to control
the generated semantics by manipulating the semantic key
mapper. In this section, we will discuss this aspect.

1) Controllable Semantic Key Mapping Methods: In addi-
tion to using identity function as the mapper, there are many
other automatic ways to map the input semantic keys. The idea
is to find words or phrases semantically related to the input
semantic keys. Either linguistic mapping, such as synonym or
antonym, or data driven mapping, such as word embedding
[38] neighborhood, can be used. Besides the automatic ways,
it is also possible to manually control the mapping, i.e. set the
output semantic key. Table VI shows the generated comments
of the same post using different semantic mapping functions.

TABLE VI: Comments Generated Using Different Semantic-
key Mapping Methods

EFFOAEL L G E RGN -

Post A good society should be composed of people of kindness.

[ Mapping-Method | Key-Word | Response |

Identity Mapper é = FRE ——ﬁ'{g{m .
kindness Kindness is a belief.

Synonym }i% . & F‘%—‘.ﬂ’i&.& :

friendliness | Kindness is a virtue.
Antonym ERA AR ALEGEE LT .

evil A society without evils is more terrifying.
Embedding RAL RAE—FESTIE -

optimism Optimism is an attitude of life.

1 ERSER

Common-Reply r?a]ly l;;:%l);; T

right Right, right.

A FIMABAERG—@ -

person Every person has a side of kindness.
Random T E FHARTERERT

China The gap between the wealthy and the poor in China is too big.

It can be observed that with a synonym or antonym mapping
function, the generated comments have close semantic link
to the post but different content. This semantic richness
demonstrates the advantage of using external memory. The
“common-reply” semantic keys are the key words correspond
to over ten thousands post-comment pairs. We believe these
keys are signs of common replies which should lead to dull
response as shown in Table VI. We also use a randomly
selected semantic key to show the possibility of guiding
the generated comments. As the table shows, most of these
comments are capable of keeping semantic relevance and topic
coherency. However, it is worth noting that not all semantic
mapping function will lead to sensible results. We have also
observed that when using data driven mapping function like
embedding or random mapping, the systems may generate
incomprehensible comments. Using some common keys can
also lead to dull comments. Usually, identity or linguistic
mapping are more reliable.

2) Knowledge Introduction by External Memory: Besides
of the diverse and informative responses, our model has
the potential to introduce new knowledge into the generated
comments due to the use of external memory. Considering
the external semantic memory construction procedure where
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the content of a memory block is a matrix including the top-
K representative comment sentence embeddings, it is likely
that knowledge related to the corresponding semantic key is
contained in the matrix. The embedded knowledge can be
related to the co-occurred words or relevant entities in the
training data of external memory. Some examples are shown
in Table VII.

TABLE VII: Generated Responses of Knowledge Introduction
by External Memory

Post R ERAANZE?
What is your favorite constellation?
Key-Word | Response
Y RRERERE -

. Capricorn I love Capricorn.
S tic-K — =
CMMCRY THFE | RERFERIK

Sagittarius | I am a Sagittarius and I like it.
SRARRHOY XBEAT -

Post N S .
Jay Chou’s movie is so nice today.
Key-Word | Response

Semantic-Key [ 3K AT KATREFIT -
song Jay Chou’s songs are nice too.

Post Koty s RiFz% -
Van Gogh’s paintings are very beautiful.
Key-Word | Response
BEES RaETH&®A XK.

Semantic-Key sunflower The Sunflower by Van Gogh.
=S e g% -
Holland Van Gogh’s paintings are very beautiful.

As can be observed from the table, external information
can be introduced by manually assigning specific semantic
keys, which makes the comments substantial without hurting
fluency and coherency. For example, given the semantic key
“Song”, the model shows the association ability and generated
the comments “Jay Chou’s songs are nice too.”, which uses
the knowledge that Jay Chou is a movie star and singer.
However, it is not possible to always successfully introduce
the knowledge into the comments when the specific semantic
keys do not contain enough information. For example, given
the semantic key “Holland”, the generated comment is same
as the post, which does not use the knowledge that Van Gogh
is a painter of Holland. This is because that the content of the
semantic key does not contain such knowledge.

V. CONCLUSION

This paper proposes a new generation approach for short
text conversation task. By incorporating external semantic
memory in encoder-decoder framework, the approach greatly
alleviates the problem of general replies without substantiality
and generates more diverse and concrete responses. Both
objective evaluation and human evaluation demonstrate the
advantages of this new approach. The separation of external
memory construction and neural network training also makes
it possible to utilize non-parallel corpora. Furthermore, the
semantics of generated responses can be controlled by manip-
ulating the semantic key mapper, which implies a new way to
generate rich responses. Due to data sparsity, when data driven
mapping functions like embedding or random mapping are
used, the systems may generate incomprehensible comments,
which is a problem to be addressed in the future.
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